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Comment nos activités ont changé 
pendant le confinement du printemps 2020 ?

q Circulation automobile : autour de -73 % ↓
q Traffic aérien: -91 % ↓

q Chauffage domestique: +8% à 20% ↑

q Industrie: -44 % ↓

q Trafic maritime: -19 % ↓

q Production énergétique: -16 % ↓

Focus de cette étude: Europe et le mois d’Avril 2020 (confinement le plus strict)



ØDes polluants secondaires 
produits par des réactions 

chimiques dans l’atmosphère

Quels sont les polluants atmosphériques issus de ces activités?

ØDes polluants primaires 
directement émis vers 

l’atmosphère

ØQuels sont les polluants atmosphériques les plus nocifs pour la santé ? 
Les particules (PM) et l’ozone (O3) troposphérique



Comment quantifier l’impact du confinement lié au 
COV-19 sur la pollution atmosphérique?

§ Réseaux de stations 
de mesure in situ

§ Modèles de 
chimie-transport § Observations 

satellitaires

Complexité: L’abondance des polluants varient par multiples facteurs: 
émissions, météorologie, régimes chimiques

Synergies



Observations
Satellite

In-situ 2020 
vs 

Reference (années précédentes)

Modèle de chimie-transport 2020 (avec des émissions COVID-19)
vs 2020 (emissions classiques)

Ambiguïtés liées aux conditions météorologiques

Ambiguïtés sur les émissions durant le confinement

Approches pour quantifier l’impact du confinement lié au 
COV-19 sur la pollution atmosphérique



Les monoxydes d’azote 
ØEmissions directes majoritairement des automobiles
ØCourte durée de vie (heures à jours) è Concentrations élevées dans les mégacités
Ø Influence modérée des conditions météorologiques



Les monoxydes d’azote 

[ESA website, 2020]

ØEmissions directes majoritairement des automobiles
ØCourte durée de vie (heures à jours) è Concentrations élevées dans les mégacités
Ø Influence modérée des conditions météorologiques

Observations du capteur satellitaire TROPOMI (NO2 intégré sur toute l’atmosphère)

Premier confinement COVID-19 Référence: même période en 2019

-54 %

-48 %
-49 %

-47 %

Ø Forte et claire réduction de NO2 en zones urbaines
et corrélée aux émissions automobiles



Les monoxydes d’azote 

[Ordoñez et al., 2020]

Mesure en 2020 – Prédiction selon 2015-2019 
(NO2 à la surface)

Premier confinement COVID-19
vs 2015-2019

show the results for the combination of them throughout the
manuscript.

For the characterization of the meteorological conditions, we have
extracted the following fields from the ERA5 meteorological reanalysis
(Hersbach et al., 2020), at 0.75° × 0.75° horizontal resolution, for the
1981–2020 period: daily maximum air temperature at 2 m (T2max);
dailymean fields of the zonal (U10) andmeridional (V10)wind compo-
nents at 10m, 500 hPa geopotential height (Z500), 2-m specific humid-
ity (q) and downward solar radiation flux (SR), and daily accumulated
precipitation (Prec). Although ERA5 data may have some deficiencies
in capturing the local meteorology at some sites, the resolution used
here seems to be appropriate as shown by previous analyses on the in-
fluence of meteorology on surface ozone observations in Europe (Otero
et al., 2016; Boleti et al., 2020). Furthermore, additional analyses based
on NCEP/NCAR meteorological data at 2.5° × 2.5° (Kalnay et al., 1996)
confirm that the results presented in this work are not very sensitive
to the choice of the reanalysis dataset (not shown).

2.2. Statistical model

A generalised additive model (GAM) is a multivariate semi-
parametric regression model that accounts for the additive effect of
the predictors on the predictand and their non-linear relationships.
This tool is commonly used to quantify the influence of meteorology
on air pollutant time series (Dominici et al., 2002; Barmpadimos et al.,
2011; Pearce et al., 2011; Boleti et al., 2018).We have applied this statis-
tical technique, provided by the pyGAM Python module (Servén and
Brummitt, 2018), to each site separately in order to characterise the re-
lationship between the air pollutant concentrations and meteorological
variables. We have built the models using March and April data from
2015 to 2019. In addition to the meteorological drivers mentioned in
Section 2.1, we have also included the occurrence of working vs. non-

working days in the models as it is known to affect the day-to-day evo-
lution of air pollution. This is considered as a categorical variable that
treats both the weekends and Easter holidays as non-working days.
While the model uses spline functions to estimate the pollutant re-
sponse to continuous variables, the categorical variables are fit using
factor functions, with fixed constant values for each categorical attri-
bute. The general form of the model used in this work is as follows:

Y ¼ β0 þ
X

x
sx Axð Þ þ

X

y
fy By
! "

ð1Þ

where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.
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Mesures in situ (NO2 à la surface)
2020 – Moyenne (2015-2019)

-43 %

-52 % -44 %

Influence des conditions météorologiques

Premier confinement COVID-19
vs 2015-2019 (effet COVID-19 seul)

Ø Faible influence des conditions météorologiques



Les monoxydes d’azote 
Influence de la mégacité parisienne: Ville de Paris vs Banlieue ouest

Paris ➔ Banlieue ouest (fort vent)
Paris ➔ Banlieue ouest (faible vent)

Paris ➔ Banlieue ouest

Colonne intégrée NO2 - SAOZ Concentration surface NO2 – in situ Tendance colonne intégrée NO2

Ø Fort gradient Paris/Banlieue : +20% quand la masse d’air vient de Paris   

Ø Reduction du NO2 durant le confinement 
en 2020: -56 % à Paris et 46 % en banlieue 
ouest (Guyancourt)

[Pazmiño et al., 2021]

Décroissance liée à règlementation
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Les particules 
ØMultiples origines: Emissions directes + Production secondaire par réactions chimiques
ØDurée de vie de une semaine è Particules transportées par le vent loin des sources
Ø Influence significative des conditions météorologiques



Les particules 
ØMultiples origines: Emissions directes + Production secondaire par réactions chimiques
ØDurée de vie de une semaine è Particules transportées par le vent loin des sources
Ø Influence significative des conditions météorologiques

Evolution des concentrations en particules fines (PM2.5)
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Mégapole Parisienne

Ø Augmentation 
entre l’hiver et le 
printemps 2020

Ø Pics de pollution aux particules et à 
l’ammoniac (mauvaise qualité de 
l’air) typique des printemps 
èNitrates d’ammonium

[Viatte et al., 2021]



Les particules 

[Menut et al., 2020]

Influence du confinement: Modèle CHIMERE (émissions COVID) – (émissions standard)

-18% de PM2.5 en France (sans claire 
distinction ville/campagne)

Reduction de NOx automobile è Reduction modérée des nitrates



Les particules 

[Petit et al., 2021]

Effet de la réduction de NOx sur les particules : 
Composition confinement vs hors confinement (météo similaire)

Ø Reduction de NOx è -45 % de nitrate et corrélée avec -25% aérosols organiques secondaires 
Ø En plus d’une réduction des hydrocarbures et carbone de suie (−62 % et −55 %)

Aérosols 
organiques oxydés

AmmoniumNitrateCarbone de suie 
(automobile)

Hydrocarbures



La pollution à l’ozone

ØPolluant secondaire issue des réactions photochimiques de NOx, et Composées 

Organiques Volatiles (COV)

ØDurée de vie de une à deux semaines è Ozone transporté par le vent loin des sources

Ø Forte influence des conditions météorologiques

ØRégimes photochimiques

10076 M. Beekmann and R. Vautard: A modelling study of photochemical regimes over Europe

Table 3. Statistical measures for the average chemical regime
for Omax3 statistics as in Table 1, but stratified as a function of
the month, for the period 2001–2003; (a) North-Western Europe,
NWEU, (b) Mediterranean, MED, and (c) North-Eastern Germany,
NEG.

(a)
NWEU Mean Sigma Min Max f > 0
Omax3

Mai 3.26 1.17 0.05 5.87 1
June 4.22 1.71 �0.11 7.26 0.99
July 4.00 1.65 �0.07 7.59 0.99
August 3.96 2.40 �1.55 9.02 0.95

(b)
MED Mean Sigma Min Max f > 0
Omax3

Mai �1.49 0.75 �2.35 2.65 0.05
June �2.13 0.67 �3.73 3.29 0.02
July �2.21 0.52 �3.89 1.76 0.01
August �2.91 0.65 �4.63 2.73 0.01

(c)
NEG Mean Sigma Min Max f > 0
Omax3

Mai 0.52 0.54 �0.85 1.97 0.83
June 0.16 0.60 �1.39 1.28 0.65
July 0.24 0.73 �1.41 1.84 0.61
August �1.87 0.64 �3.12 �0.16 0

3.3.2 Month to month variability

The monthly variability in the chemical regime from May
to August are shown in Table 3 and Fig. 5, results for the
target Omax3 each month being averaged over years 2001–
2003. The chemical regime distribution is fairly similar for
different months. In May, the VOC sensitive regime is spa-
tially slightly more extended over North-Western and Cen-
tral Europe, with a larger fraction of grid cells showing a
VOC sensitive regime over North-Eastern Germany (83%
as compared to 61–65% in June/July, see Table 3c). How-
ever, maximum values in the London/Channel/Benelux re-
gion are lower (<+5 ppb, versus <+7 ppb for the June to
August period, see Fig. 5). In August, the delimitation line
between chemical regimes is shifted westward with respect
to May to July (Fig. 5). As a consequence, over North-
Eastern Germany, the regime switches from VOC sensitive
during May to July to NOx sensitive for August (Table 3c).
During August, the NOx sensitve regime is also more pro-
nounced over the Mediterranean basin: minimum values
are down to �5 ppb versus down to �3 ppb for the other
months (Fig. 5), average values for the Mediterranean are
�2.9 ppb for August as compared to �2.1 and �2.2 ppb for
June and July (Table 3b). The NOx sensitive regimes over the

Figure 5 
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Fig. 5. Average chemical regime (with respect to daily ozone max-
imum) (a) for May, (b) for June, (c) for July, (d) and for Au-
gust 2001–2003.

Mediterranean, but also over the southern part of Germany
and France, are even more enhanced during August 2003
(Fig. 6), which was characterised during its first half by an-
ticyclonic blocking over Western Europe leading to large re-
gional ozone build-up (e.g. Vautard et al., 2005).
Blocking anticyclonic situations affect chemical regimes

in various ways (e.g. Sillman, 1999): stronger emission ac-
cumulation a priori favours more VOC sensitive regimes.

Atmos. Chem. Phys., 10, 10067–10084, 2010 www.atmos-chem-phys.net/10/10067/2010/

[Beekmann and Vautard, 2010]

En conditions normales 
(hors confinement)

Régime limité par COV

Régime limité par NOx
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Figure 5. Geographic distribution of observed tropospheric summer ozone anomalies (averaged 289 
over the months April to August, and over altitudes from 1 to 8 km) for the years a) 2011 and b) 290 
2020. Panels c) and d): same, but for CAMS results at the station locations. Colored circles (or 291 
squares) give the anomaly at the ozonesonde stations. Squares are for FTIR and lidar stations. 292 
See Table S1 of the supplement for the numerical values. Black filling indicates insufficient data 293 
in the given year. 294 

 295 

4 Discussion and Conclusions 296 

Ozone stations in the northern extratropics indicate exceptionally low ozone in the free 297 
troposphere (1 to 8 km) in spring and summer 2020. Compared to the 2000 to 2020 climatology, 298 
ozone was reduced by 7% (≈4 ppbv). Widespread low tropospheric ozone across so many 299 
stations and over several months has not been observed in any previous year since 2000. 300 
Atmospheric composition re-analyses with “business as usual” emissions from the Copernicus 301 
Atmosphere Monitoring Service (CAMS, Inness et al., 2019) do not reproduce the observed low 302 
tropospheric ozone in 2020. 303 

The year 2020 stood out in a number of ways: a.) The Arctic stratospheric winter vortex 304 
was exceptionally cold and stable. This produced record levels of springtime ozone depletion in 305 
the Arctic lower stratosphere (Manney et al., 2020; Wohltmann et al., 2020), which might affect 306 
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[Steinbrech et al., 2021]
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L’ozone dans la troposphère libre

L’anomalie de l’ozone dans la troposphère libre pendant le confinement

Observations sondes in situ et lidar Modèle de chimie-transport CAMS

Reduction de l’O3 dans la 
troposphère libre 

sous-estimées

Claire réduction de l’O3 dans la troposphère libre
è Confinements simultanés dans nombreux pays



q Comment quantifier l’effet du confinement seul? Et tenir compte des conditions 
météorologiques?

èSynergie multi-approches:

èMeilleur sensibilité à l’ O3 
proche de la surface

La pollution à l’ozone

Observations 
satellitaires nouvelles Mesures in-situ Modèle de Chimie-transport

+ +



Synergie des mesures IR et UV co-localisées

Profile O3

Atmospheric and 
surface conditions

UV (VLIDORT)

Radiative transfer 
models

IR (KOPRA)

Reflectance UV
Simulated Spectra

Observed spectra

Radiance IR

Simultaneous 
minimisation of IR 
and UV residuals

GOME2

IASI

Adjusting a 
unique O3 

profile
Iterations
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Observations satellitaires multispectrales de l’O3 IASI+GOME2 
[Cuesta et al., 2013, ACP]

Couverture globale
(matin ~ 9:30 LT) 

depuis 2008

METOP

La pollution à l’ozone



IASI+GOME2 satellite observation In situ surface
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Bon accord entre le satellite et les mesures in situ à la surface, dans les structures, le signe et les concentrations en absolue

1-15 Avril

O3 (2020) – O3 (2019) è Effet confinement + 𝚫Météorologie 
Mesures In situ à la surface

O
3 (ppb)  <  3 km

O
3 (ppb)  surface

La pollution à l’ozone
[Cuesta et al., 2022]



IASI+GOME2 satellite observation In situ surface
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Signatures claires des régimes limités en COV & NOx, accord avec Beekmann and Vautard, 2010

1-15 Avril

O3 (2020) – O3 (2019) è Effet confinement + 𝚫Météorologie 
Mesures In situ à la surface

O
3 (ppb)  <  3 km

O
3 (ppb)  surface

Limité en COV
↓ Titration NO è ↑ O3

Limité en NOx
↓ NOx è ↓ O3

Regime 
intermediare

La pollution à l’ozone



IASI+GOME2 satellite observation In situ surface
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1-15 Avril
CHIMERE simulations

O
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O
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Pas de signatures claires des régimes limités en 
COV et NOx

La pollution à l’ozone

O3 (2020) – O3 (2019) è Effet confinement + 𝚫Météorologie 
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La pollution à l’ozone



show the results for the combination of them throughout the
manuscript.

For the characterization of the meteorological conditions, we have
extracted the following fields from the ERA5 meteorological reanalysis
(Hersbach et al., 2020), at 0.75° × 0.75° horizontal resolution, for the
1981–2020 period: daily maximum air temperature at 2 m (T2max);
dailymean fields of the zonal (U10) andmeridional (V10)wind compo-
nents at 10m, 500 hPa geopotential height (Z500), 2-m specific humid-
ity (q) and downward solar radiation flux (SR), and daily accumulated
precipitation (Prec). Although ERA5 data may have some deficiencies
in capturing the local meteorology at some sites, the resolution used
here seems to be appropriate as shown by previous analyses on the in-
fluence of meteorology on surface ozone observations in Europe (Otero
et al., 2016; Boleti et al., 2020). Furthermore, additional analyses based
on NCEP/NCAR meteorological data at 2.5° × 2.5° (Kalnay et al., 1996)
confirm that the results presented in this work are not very sensitive
to the choice of the reanalysis dataset (not shown).

2.2. Statistical model

A generalised additive model (GAM) is a multivariate semi-
parametric regression model that accounts for the additive effect of
the predictors on the predictand and their non-linear relationships.
This tool is commonly used to quantify the influence of meteorology
on air pollutant time series (Dominici et al., 2002; Barmpadimos et al.,
2011; Pearce et al., 2011; Boleti et al., 2018).We have applied this statis-
tical technique, provided by the pyGAM Python module (Servén and
Brummitt, 2018), to each site separately in order to characterise the re-
lationship between the air pollutant concentrations and meteorological
variables. We have built the models using March and April data from
2015 to 2019. In addition to the meteorological drivers mentioned in
Section 2.1, we have also included the occurrence of working vs. non-

working days in the models as it is known to affect the day-to-day evo-
lution of air pollution. This is considered as a categorical variable that
treats both the weekends and Easter holidays as non-working days.
While the model uses spline functions to estimate the pollutant re-
sponse to continuous variables, the categorical variables are fit using
factor functions, with fixed constant values for each categorical attri-
bute. The general form of the model used in this work is as follows:

Y ¼ β0 þ
X

x
sx Axð Þ þ

X

y
fy By
! "

ð1Þ

where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.
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show the results for the combination of them throughout the
manuscript.
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tical technique, provided by the pyGAM Python module (Servén and
Brummitt, 2018), to each site separately in order to characterise the re-
lationship between the air pollutant concentrations and meteorological
variables. We have built the models using March and April data from
2015 to 2019. In addition to the meteorological drivers mentioned in
Section 2.1, we have also included the occurrence of working vs. non-

working days in the models as it is known to affect the day-to-day evo-
lution of air pollution. This is considered as a categorical variable that
treats both the weekends and Easter holidays as non-working days.
While the model uses spline functions to estimate the pollutant re-
sponse to continuous variables, the categorical variables are fit using
factor functions, with fixed constant values for each categorical attri-
bute. The general form of the model used in this work is as follows:
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where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.
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For the characterization of the meteorological conditions, we have
extracted the following fields from the ERA5 meteorological reanalysis
(Hersbach et al., 2020), at 0.75° × 0.75° horizontal resolution, for the
1981–2020 period: daily maximum air temperature at 2 m (T2max);
dailymean fields of the zonal (U10) andmeridional (V10)wind compo-
nents at 10m, 500 hPa geopotential height (Z500), 2-m specific humid-
ity (q) and downward solar radiation flux (SR), and daily accumulated
precipitation (Prec). Although ERA5 data may have some deficiencies
in capturing the local meteorology at some sites, the resolution used
here seems to be appropriate as shown by previous analyses on the in-
fluence of meteorology on surface ozone observations in Europe (Otero
et al., 2016; Boleti et al., 2020). Furthermore, additional analyses based
on NCEP/NCAR meteorological data at 2.5° × 2.5° (Kalnay et al., 1996)
confirm that the results presented in this work are not very sensitive
to the choice of the reanalysis dataset (not shown).

2.2. Statistical model

A generalised additive model (GAM) is a multivariate semi-
parametric regression model that accounts for the additive effect of
the predictors on the predictand and their non-linear relationships.
This tool is commonly used to quantify the influence of meteorology
on air pollutant time series (Dominici et al., 2002; Barmpadimos et al.,
2011; Pearce et al., 2011; Boleti et al., 2018).We have applied this statis-
tical technique, provided by the pyGAM Python module (Servén and
Brummitt, 2018), to each site separately in order to characterise the re-
lationship between the air pollutant concentrations and meteorological
variables. We have built the models using March and April data from
2015 to 2019. In addition to the meteorological drivers mentioned in
Section 2.1, we have also included the occurrence of working vs. non-

working days in the models as it is known to affect the day-to-day evo-
lution of air pollution. This is considered as a categorical variable that
treats both the weekends and Easter holidays as non-working days.
While the model uses spline functions to estimate the pollutant re-
sponse to continuous variables, the categorical variables are fit using
factor functions, with fixed constant values for each categorical attri-
bute. The general form of the model used in this work is as follows:
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where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).
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ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.
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up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
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evidencing the consistency of the model (not shown).
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Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
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where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
O3). β0: intercept of the model. sx(Ax): smoothing spline function on
continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.
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where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
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The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.
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where Y: pollutant concentration (1-h daily maximum NO2 or MDA8
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continuous feature Ax (meteorological field). fy(By): factor function on
categorical feature By (working or non-working day).

The resulting deviance explained by the GAMs for March–April
2015–2019 is satisfactory for most locations, with the median across
all sites ranging from 48% for NO2 to 60% for O3 (Fig. S2). The spatial dis-
tribution shows the best performance for NO2 in Benelux (with values
up to ~65%) and for O3 in the inner part of the continent (~80%). In ad-
dition, the examination of residuals indicates normal distributions, with
no significant biases and constant residual variance (homocedasticity),
evidencing the consistency of the model (not shown).

3. Impact of emission changes and meteorology on O3 during early
spring 2020

The left panels of Figs. 1 and S3 illustrate the concentration anoma-
lies (in % and μg/m3, respectively) of NO2 (top) andO3 (bottom) at back-
ground sites during 15 March – 30 April 2020 with respect to the same
period in 2015–2019. As expected, the emission reductions yielded de-
creases in the NO2 concentrations at most sites. This is particularly

Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
50th and 90th percentiles (p10, p50, p90) across all sites. The corresponding absolute values (μg/m3) can be found in Fig. S3.
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Fig. 1. Left panels: Average anomalies (%) of the observed 1-h daily maximumNO2 (top) andMDA8 O3 (bottom) concentrations at background sites during 15March – 30 April 2020with
respect to those of the same period in 2015–2019. Right: Average meteorologically-adjusted changes (%) of the same pollutants during 15 March – 30 April 2020, calculated as the
difference between the observed concentrations and the concentrations estimated by the GAMs described in Section 2.2. The numbers below the panels respectively indicate the 10th,
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Conclusions
La réduction drastique des activités durant le confinement lié au COVID-19 à conduit à :

1. Une réduction franche de la concentration des polluants primaires: 
è Environs -50% des oxydes d’azote
è Environs -60% des particules primaires issues du trafic routier

2. Une réduction des particules secondaires dont la production est liées à l’abondance des 
oxydes d’azote : -45% de nitrates (et corrélée à -25% des aérosols organiques). Cependant, 
cela n’a pas empêché à voir les pics de pollution aux particules typiques du printemps.

3. Une réduction de -20 % à -30 % de la pollution à l’ozone en zones rurales (dans les zones à 
régime limité en NOx) et à grande échelle (multiples confinements à l’hémisphère nord)

4. Une augmentation de +5 à +20% de la pollution à l’ozone dans le agglomérations urbaines 
(régime limité en COV) è suite à l’accumulation de l’ozone liée à l’inhibition du puits de 
l’ozone par titration avec la monoxyde d’azote.


